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The concept of fractal dimensionality is used to study different statistical 
methods for generating self-avoiding walks (SAWs). The reliability of SAWs 
traced by the enrichment technique and the dynamic Monte Carlo technique is 
verified. The number of dynamic cycles which represent a single independent 
SAW of N o steps is found to be about 0.1N 3. We show that the enrichment 
process for generating SAWs may be presented as a critical phenomenon. 

KEY WORDS: Fractal dimensionality; enrichment Monte Carlo; dynamic 
Monte Carlo; critical phenomena, self-avoiding walks. 

1. INTRODUCTION 

The statistical configurational properties of long self-avoiding walks 
(SAWs) have been of considerable interest. (~-3) Exact enumeration of 
chains and Monte Carlo (MC) methods were used in numerical stud- 
ies. (4-11) Most of the Monte Carlo methods give approximate representative 
ensembles of SAWs. The reliability of these ensembles was checked by 
measuring quantities such as the mean square end-to-end distance of the 
chains and the mean square radius of gyrations. (5 7,9) However, these 
measurements do not provide detailed information about the internal 
structure of the chains. In the present work we make use of local fractal 
dimensionality (12'13) (LFD), in order to check the structure of chains 
obtained by different methods and to compare between them. 

Following the ideas presented by Mandelbrot, (14l LFD is defined (12'13) 
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where (Ru2)N0 is the mean-square distance of all subchains consisting of N 
steps in a SAW of N O steps. The LFD DNo(N ) is a measure of the extent 
that the walk winds about, on a length scale corresponding to N. 

Numerical measurements of LFD recently performed, <12'~3) had shown 
for a large range of scale-lengths that Duo(N ) is nearly constant and its 
value is l /p ,  ~ being the known end-to-end exponent. This shows that 
SAWs have an internal self similarity or a scaling property in agreement 
with the ideas first presented by de Gennes. (3) LFD was found to be useful 
in determining the critical exponent p as well as corrections to scaling with 
great accuracy. (15'16) This is due to the fact that LFD uses all internal 
distances of each chain thus improving the statistics significantly. 

2. ACCURACY OF STATISTICAL ENSEMBLES 

The proper way to simulate an emsemble of SAWs is by the direct 
Monte Carlo procedure. (6) Start with an arbitrary step. Make a random 
choice for the direction of the next step (but returning to the previous site is 
excluded). Continue this procedure until the ultimate length of the SAW is 
reached or until the walk intersects itself. If the SAW intersects itself before 
terminating then the whole configuration is not considered and a new start 
is made. This method gives indeed an equilibrated ensemble of SAWs since 
it is equivalent to eliminating all intersecting walks from a given ensemble 
of random walks. 

In order to check the magnitude of the fluctuations of LFD measured 
on such an ensemble, we compare two direct MC ensembles (consisting of 
100 and 30,000 SAWs of length N O = 20 in two-dimensional space d = 2) 
with results obtained from an exact enumeration of these SAWs (Fig. 1). In 
the small ensemble (100 SAWs) fluctuations for short subchains are quite 
small. For ensembles with about 104 SAWs fluctuations are even smaller, 
about 0.1%. 

By applying the method described above, it is possible to obtain 
ensembles of SAWs with N O bigger than may be obtained by exact 
enumerations (typically 20). However, the probability that a walk intersects 
itself increases exponentially with N O . Thus, the longer N O is, the more 
computer time one needs, so that the method becomes impractical for 
N0~102 (a = 2,3). 
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Fig. 1. D~o(N), the LFD for SAWs, traced on a square lattice, with N O = 20. The solid line 
represents exact enumeration data, the circles show the results for a direct MC ensemble 
containing 3 • 10 4 SAWs and the crosses those for calculations on a set of 100 configurations. 

3. E N R I C H M E N T  M E T H O D  

In  o rde r  to overcome the a t t r i t ion  descr ibed  in the first section, Wal l  et 
a/. (6) deve loped  the enr ichment  technique.  In  this technique,  the sample  of 
walks is enr iched b y  allowing,  af ter  each s steps of the walk,  p di f ferent  
trials for add ing  a new sect ion of s nonin tersec t ing  steps. The  a t t r i t ion  of 
the samples  behaves  like e -?~N~ (where X is a l a t t i ce -dependen t  a t t r i t ion  
constant) .  However ,  this is c o m p e n s a t e d  by  an  en r i chment  of ? Uo/S SO that  
if g - - p c  - x s =  1 the a t t r i t ion is exact ly  compensa ted .  If g > 1, the walks 
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with common first sections are given too much weight. If g < 1 the attrition 
is not fully compensated. Therefore, using g = 1 is best. 

It had been argued that the enrichment of samples does not bias the 
ensemble. (6) This was demonstrated by measurements on enriched en- 
sembles of quantities such as the mean square radius of gyration which 
yielded good results. (2'6) We intend to be more rigorous and check whether 
the enrichment spoils the internal structure of the SAWs. In spite of the 
above demonstration nonbias, it might still be possible that some subchain 
distances are different; and yet they still have the same mean end-to-end 

2 ~  

z 

0 
Z 

I I J 

] o 5  I I I 

0 15 30 45 60 

Fig. 2. DNo(N), the L F D  for SAWs, t raced on a SC lat t ice (d  = 3), for N o = 60. The  full l ine 
is the resul t  of d i rect  M C  ensemble  con ta in ing  104 SAWs. The circles and  t r iangles  show the 

results for 104 SAWs of en r i chment  ensembles  us ing s = 20, p = 3 and  s = 30, p = 6, respec- 

tively. 
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distance. We generate an ensemble of 10,000 SAWs with N o = 60 on a 
cubic lattice by the direct method of Section 2. Then we compare to the 
obtained LFD of enriched ensembles with s = 20, p = 3 and s = 30, p = 6 
(Fig. 2). The results compare favorably showing that if there are any 
distortions of internal distances they must be very small. There is in fact 
some influence to the aggregation of s-step sections. In Fig. 3 we show 
results for an ensemble of 10,000 SAWs traced on a two-dimensional lattice 
with/~  = 13 and s = 20. There seem to be irregularities in the L F D  at 
N = sI  (l = 1,2, 3) which clearly result from the method used. However,  
these irregularities are minor and they are not a practical obstacle in 
researching the properties of SAWs. 
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Fig. 3. DNo(N), the LFD for 104 SAWs traced on a square lattice with N o = 80,  using 
enrichment technique with s = 20 ,  p = 13. 
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A similar method to the enrichment technique was proposed by 
Alexandrowicz, (17) the dimerization technique. His method also consists of 
joining sections. It  would be interesting to have the above-described check 
done on an ensemble of dimerized SAWs. 

4. BIASED ENRICHMENT 

In this section we explore the influence of the parameter  g = pe-aS on 
the ensemble. We interpret the two regions of g (g  > 1, g < 1) as two 
different phases where g = g~ = 1 is a critical point separating the two. 

When g < g~ = 1, there is a net attrition of the samples and thus the 
method produces SAWs with a finite average IV 0. The SAWs produced that 
way are representative of an equilibrated ensemble. Indeed, in the limit 
p = 1, s = m (g  = 0) we return to the direct method described in Section 2. 
The mean end-to-end distance (R~o) 1/2 of the SAWs increases as g 
approaches gc from below (since N O increases) thus, (R2o)1/2 represents a 
correlation length ~ diverging at go. 

The average IV o for g < 1 can be calculated considering the probability 
P(xs) of tracing a SAW having N O = xs steps, 

e(xs) cc (pe-~)x= gX (2) 

Then for g ~< g~ 

N o = s  f~xgxdx _ 

so that 

(3) f~ g Xdx in g g~ - g 

~ ( R 2 0 ) ' / 2 ~ N ~ 1 6 2  - g ) -~  (4) 

Thus the usual end-to-end exponent v gets the meaning of a correlation 
length exponent. 

At the critical point g = g~ = 1, JV0~ m ( ~  ~ ) ,  and this is in fact the 
only way to build "infinite", 3 nonbiased SAWs. Of course finite SAWs can 
be built with g < gc (we show examples later) but with less efficiency, i.e., 
one gets more diluted ensembles. 

For g > gc one gets biased samples of SAWs. In the l imitp --* m, s = 1, 
(g  ~ m) we obtain a sample of maximally biased SAWs whose LFD equals 
2 after a small correlation length 4. This is predicted theoretically (18) and 
numerically as shown below. When g approaches gc from above, the steps 
within the walks are typically correlated up to a correlation length ~ (which 
diverges at gc) as for a SAW. (19) Above this correlation length 4, the 
correlation between steps is negligible and therefore LFD is 2 as for ideal 
chains. 

3 In practice one terminates the SAWs at an arbitrary large value of N 0. 



Study of Monte Carlo Methods for Generating Self-Avoiding Walks 

2 ~ 5  t i i 

667 

z 
~ o  

z 
c3 

2 ~  

1 o 5  

g:20 
/ 

i F [ 

0 2 5  5 0  7 5  ~ 0 0  

Fig. 4. DNo(N), the LFD for ensembles of SAWs, containing 104 configurations. The SAWs 
were generated by the enrichment technique with g = 20, 8, 4, 1, 0.5. 

The effect of g on LFD of SAWs is shown in Fig. 4. For g ~ oe the 
LFD tends to 2 at a small correlation length. When g decreases but is still 
above 1, LFD tends to 2 but with an increasing correlation length. Finally 
for g < 1 LFD tends asymptotically (12'13) to 1/p (~1 .7  for d = 3). 

5. DYNAMIC MONTE CARLO METHOD 

We now compare ensembles obtained from the dynamic Monte Carlo 4 
method (~) to the static Monte Carlo ensembles discussed above. In Fig. 5 

4 In the dynamical Monte-Carlo method (11) one starts with an arbitrary SAW's configuration: 
in each cycle a group of two or three steps on the walk is randomly chosen and shifted 
(whenever possible). Equilibrium is expected to be reached after a large number of cycles. 
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Fig. 5. DNo(N), the LFD for SAWs traced on SC lattice (d = 3), with N O = 20, 30, 40, 50, 
and 60. The solid lines are the results for direct MC ensembles each containing 104 
configurations. The circles show the results for dynamic MC ensembles containing 107 cycles 
each. 

we show LFD of 10000 SAWs of length N O = 20,30,40,50,60 ( d =  3) 
analyzed using static Monte Carlo ensembles as well as the LFD of SAWs 
obtained from dynamic Monte Carlo ensembles built from 10 v cycles. 
Generally the results are in good agreement, as seen in Fig. 5. 

From a comparison of the two Monte Carlo methods it is possible to 
estimate the number of cycles needed in order to represent one independent 
configuration. (2~ For fluctuations o f  (RN2)60, we compare in Fig. 6 between 
static ensembles containing 30 and 50 independent SAWs and dynamic 
ensembles of 106 cycles each. From Fig. 6 it is estimated that for N O = 60, 
10 6 cycles represent 40 + 10 independent configurations. The same proce- 



Study of Monte Carlo Methods for Generating Self-Avoiding Walks 669 

0 
ed z 

A 

ed Z 
CE 

V 
I 

O 
Z 

A 
~ z  

% 

5 

0 

F T I 

A A " 00 

A /0 0 
A / 9 

A ~  9 O 
A AA 0 0 A~ ;9 

AA A 0 0 

A / /  0 

/ o 9 

A}// 9 9 

A A 9 0 

A i 0 

AA A / '  0 0 

~ 

A O 
A / 

I i AA 

A 9 
n 

/ 9 

y~ 
A A "0 

A / '  9 
A 0 / 

A // 9 

A A // 9 0 

a / o 
A /' 9 

A / 9 

O I ~ I 

0 10 20 30 40 50 60 

Fig. 6. The fluctuations in (RN2)No for N O = 60. The solid line shows the fluctuations between 
sets of 106 dynamic MC cycles. The triangles and diamonds show the fluctuations between 
sets of 30 and 50 independent SAWs produced by direct MC method, respectively. 

dure was also applied for N O -- 20, 30, 40, and 50. We find that the number 
of cycles representing one independent configuration of an No-ste p SAW is 
close to 0.1 N~ with x close (2~ to 3. 

6. CONCLUSIONS 

We have used LFD to study different statistical numerical methods for 
tracing SAWs. We find that the accuracy for the LFD of short subchains is 
about 0.1% for ensembles containing about 10 4 SAWs. This high accuracy 
is due to the use of all internal distances in each chain. 
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It is shown that the enrichment technique produces representative 
ensembles of SAWs except for minor disturbances in the internal distances 
around N = sl (l'= integer). The dynamic Monte-Carlo method also pro- 
duces the same kind of ensembles. The number of cycles needed for each 
independent configuration is about 0.1 N03. 

The enrichment technique is presented as a critical process. The 
critical point is at gc = pe-X~ = 1. Below go, SAWs are created with only a 
finite average N 0. This average diverges when g approaches & from below 
(g---> gZ). Above gc the SAWs behave like ideal chains (with LFD = 2) for 
a scale length greater than ~, while ~ diverges as g ~  g+. This picture 
reminds us of the approach of Redner and Reynolds ~21) to SAWs as critical 
phenomena. It seems that g in the enrichment technique is strongly related 
to the fugacity per monomer p in their approach. They find that (No) 
=--N'-o/V, where V = (R(2/N))  a/2, behaves like [Pc- Pl a~-I while in the 
enrichment technique (No)= ]gc- glad-l, which is effectively the same 
result. Also for p < Pc, in their approach the phase is characterized by 
finite-length chains just as for g < &. However, above Pc the phase de- 
scribed by Redner and Reynolds consists of collapsed compact chains with 
LFD = d rather than the limit of ideal chains (LFD = 2), obtained in the 
enrichment method for g > gc. 
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